Improving Automatic Speech Recognition for Lectures through Transformation-based Rules Learned from Minimal Data
نویسندگان
چکیده
We demonstrate that transformation-based learning can be used to correct noisy speech recognition transcripts in the lecture domain with an average word error rate reduction of 12.9%. Our method is distinguished from earlier related work by its robustness to small amounts of training data, and its resulting efficiency, in spite of its use of true word error rate computations as a rule scoring function.
منابع مشابه
Improving the performance of MFCC for Persian robust speech recognition
The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...
متن کاملImproving Automatic Phonetic Transcription of Spontaneous Speech Through Variant-Based Pronunciation Variation Modelling
In this paper we present an experiment aimed at improving automatic phonetic transcription of Dutch spontaneous speech through a variant-based method of pronunciation variation modelling. For spontaneous speech, the literature does not always provide enough rules to describe its characteristic phonological processes. Therefore, other methods should be applied to model pronunciation variation fo...
متن کاملAutomatic Speech Transcription and Archiving System using the Corpus of Spontaneous Japanese
The target of automatic speech recognition (ASR) research has been shifted from read speech to spontaneous speech. The technology will realize automatic transcription (and translation) of lectures and meetings. In Japan, ”Spontaneous Speech” project has been conducted in last five years, and we set up the huge ”Corpus of Spontaneous Japanese (CSJ)”, which consists of over 2000 speeches (500 hou...
متن کاملA Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation
Abstract Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...
متن کاملVoice-based Age and Gender Recognition using Training Generative Sparse Model
Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...
متن کامل